Sonnack.com
Rotation Project
2D Rotation
R
z
2
θ
=
cos
θ
-
sin
θ
sin
θ
cos
θ
R
z
2
0
=
1
0
0
1
R
z
2
90
=
0
-1
1
0
R
z
2
180
=
-1
0
0
-1
3D Rotation
R
x
3
θ
=
1
0
0
0
cos
θ
-
sin
θ
0
sin
θ
cos
θ
R
y
3
θ
=
cos
θ
0
-
sin
θ
0
1
0
sin
θ
0
cos
θ
R
z
3
θ
=
cos
θ
-
sin
θ
0
sin
θ
cos
θ
0
0
0
1
R
x
3
0
=
1
0
0
0
1
0
0
0
1
R
y
3
0
=
1
0
0
0
1
0
0
0
1
R
z
3
0
=
1
0
0
0
1
0
0
0
1
R
x
3
90
=
1
0
0
0
0
-1
0
1
0
R
y
3
90
=
0
0
-1
0
1
0
1
0
0
R
z
3
90
=
0
-1
0
1
0
0
0
0
1
R
x
3
180
=
1
0
0
0
-1
0
0
0
-1
R
y
3
180
=
-1
0
0
0
1
0
0
0
-1
R
z
3
180
=
-1
0
0
0
-1
0
0
0
1
R
x
3
270
=
1
0
0
0
0
1
0
-1
0
R
y
3
270
=
0
0
1
0
1
0
-1
0
0
R
z
3
270
=
0
1
0
-1
0
0
0
0
1
4D Rotation
R
zw
4
θ
=
cos
θ
-
sin
θ
0
0
sin
θ
cos
θ
0
0
0
0
1
0
0
0
0
1
R
yw
4
θ
=
cos
θ
0
-
sin
θ
0
0
1
0
0
sin
θ
0
cos
θ
0
0
0
0
1
R
xw
4
θ
=
1
0
0
0
0
cos
θ
-
sin
θ
0
0
sin
θ
cos
θ
0
0
0
0
1
R
xy
4
θ
=
1
0
0
0
0
1
0
0
0
0
cos
θ
-
sin
θ
0
0
sin
θ
cos
θ
R
xz
4
θ
=
1
0
0
0
0
cos
θ
0
-
sin
θ
0
0
1
0
0
sin
θ
0
cos
θ
R
yz
4
θ
=
cos
θ
0
0
-
sin
θ
0
1
0
0
0
0
1
0
sin
θ
0
0
cos
θ
w3.org MathML
Mozilla Tutorial
(back)
§
Top
Pub
Python
Rotation
© 2019 Chris Sonnack
All rights reserved.
feedback:
Webspinner@Sonnack.com